CBCS SCHEME

USN					

17MAT11

First Semester B.E. Degree Examination, July/August 2021 **Engineering Mathematics – I**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

Find the nth derivative of cosx cos3x cos5x.

(06 Marks)

If tany = x, then prove that

 $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$

(07 Marks)

Derive the angle between radius vector and the tangent.

(07 Marks)

- If $y = a \cos(\log x) + b \sin(\log x)$ then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2 + 1)y_n = 0$. (06 Marks)
 - Find the pedal equation of the polar curve $\frac{2a}{r} = (1 + \cos \theta)$. (07 Marks)
 - Find the radius of curvature for the folium of De-Cartes $x^3 + y^3 = 3axy$ at (3a/2, 3a/2).

(07 Marks)

- a. Expand e^{sinx} using Maclaurin's theorem upto the term containing x^4 . (06 Marks)
 - b. If $U = \log \sqrt{x^2 + y^2 + z^2}$ show that $(x^2 + y^2 + z^2) [U_{xx} + U_{yy} + U_{zz}] = 1$. (07 Marks)
 - If $x = r\sin\theta \cos\phi$, $y = r\sin\theta \sin\phi$, $z = r\cos\theta \text{ show that } J\left(\frac{x, y, z}{r, \theta, \phi}\right) = r^2 \sin\theta$. (07 Marks)
- a. Expand log(1 + cos x) by Maclaurin's series upto the term containing x^4 . (06 Marks)
 - b. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ (07 Marks)
 - c. If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$ (07 Marks)
- A particle moves along the curve $x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$ where 't' denotes time. Find the component of its acceleration at t = 2 along the tangent. (06 Marks)
 - b. Find div \vec{F} and curl \vec{F} where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$. (07 Marks)
 - Prove that $\operatorname{div}(\operatorname{curl} \overline{A}) = 0$. (07 Marks)
- A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, z = 2sin3t. Find the velocity and acceleration at any time 't' and also their magnitudes at t = 0. (06 Marks)
 - b. If $\vec{A} = xz^3i 2x^2yzj + 2yz^4k$ find $\nabla \cdot \vec{A}$ and $\nabla \cdot (\nabla \times \vec{A})$ at the point (1, -1, 1). (07 Marks)
 - Find the directional derivatives of $\phi = \frac{xz}{x^2 + y^2}$ at (1, -1, 1) along i 2j + k. (07 Marks)

17MAT11

7 a. Obtain the reduction formula for

$$\int \cos^n x$$
 and hence evaluate $\int_{-\infty}^{\pi/2} \cos^n x dx$

(06 Marks)

b. Solve $(x^2 + y^2 + x) dx + xy dy = 0$

(07 Marks)

- c. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is a constant. (07 Marks)
- 8 a. Evaluate $\int_{0}^{\pi/6} \cos^4 3x \sin^2 6x$ using reduction formula.

(06 Marks)

b. Solve $\frac{dy}{dx} + \frac{x+3y-4}{3x+9y-2} = 0$

(07 Marks)

- c. Find the orthogonal trajectories of the family of curves $\left(r + \frac{k^2}{r}\right)\cos\theta = a$, 'a' being parameter. (07 Marks)
- 9 a. Solve the following system of equations by Gauss-Seidel method to obtain the final solution correct to three decimal places.

x + y + 54z = 110, 27x + 6y - z = 85, 6x + 15y + 2z = 72.

(06 Marks)

b. Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to diagonal form.

(07 Marks)

c. Find the numerically largest eigen value and the corresponding eigen vector of the following matrix using power method

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 taking initial approximation as $\begin{bmatrix} 1 & 0.8 & -0.8 \end{bmatrix}^T$ (07 Marks)

- 10 a. Solve by Gauss elimination method 2x + y + 4z = 12, 4x + 11y z = 33, 8x 3y + 2z = 20. (06 Marks)
 - b. Diagonalize the matrix $\begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$.

(07 Marks)

c. Using Rayleigh's power method find the numerically largest eigen value and the corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$
 by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial vector. (07 Marks)

* * * *